35 research outputs found

    Controlling effective dispersion within a channel with flow and active walls

    Full text link
    Channels are fundamental building blocks from biophysics to soft robotics, often used to transport or separate solutes. As solute particles inevitably transverse between streamlines along the channel by molecular diffusion, the effective diffusion of the solute along the channel is enhanced - an effect known as Taylor dispersion. Here, we investigate how the Taylor dispersion effect can be suppressed or enhanced in different settings. Specifically, we study the impact of flow profile and active or pulsating channel walls on Taylor dispersion. We derive closed analytic expressions for the effective dispersion equation in all considered scenarios providing hands-on effective dispersion parameters for a multitude of applications. In particular, we find that active channel walls may lead to three regimes of dispersion: either dispersion decrease by entropic slow down at small Peclet number, or dispersion increase at large Peclet number dominated either by shuttle dispersion or by Taylor dispersion. This improves our understanding of solute transport e.g. in biological active systems such as blood flow and opens a number of possibilities to control solute transport in artificial systems such as soft robotics

    Coarse-grained dynamics of transiently-bound fast linkers

    Full text link
    Transient bonds between fast linkers and slower particles are widespread in physical and biological systems. In spite of their diverse structure and function, a commonality is that the linkers diffuse on timescales much faster compared to the overall motion of the particles they bind to. This limits numerical and theoretical approaches that need to resolve these diverse timescales with high accuracy. Many models, therefore, resort to effective, yet ad-hoc, dynamics, where linker motion is only accounted for when bound. This paper provides a mathematical justification for such coarse-grained dynamics that preserves detailed balance at equilibrium. Our derivation is based on multiscale averaging techniques and is broadly applicable. We verify our results with simulations on a minimal model of fast linker binding to a slow particle. We show how our framework can be applied to various systems, including those with multiple linkers, stiffening linkers upon binding, or slip bonds with force-dependent unbinding. Importantly, the preservation of detailed balance only sets the ratio of the binding to the unbinding rates, but it does not constrain the detailed expression of binding kinetics. We conclude by discussing how various choices of binding kinetics may affect macroscopic dynamics.Comment: updated: 7 figures, 15 pages main text, 8 page supplemen

    Can mass change the diffusion coefficient of DNA-coated colloids?

    Full text link
    Inertia does not generally affect the long time diffusion of passive overdamped particles in fluids. Yet we have discovered a surprising property of particles coated with ligands, that bind reversibly to surface receptors -- heavy particles diffuse more slowly than light ones of the same size. We show this by simulation and by deriving an analytic formula for the mass-dependent diffusion coefficient in the overdamped limit. We estimate the magnitude of this effect for a range of biophysical ligand-receptor systems, and find it is potentially observable for micronscale DNA-coated colloids

    Pruning to Increase Taylor Dispersion in Physarum polycephalum Networks

    Full text link
    How do the topology and geometry of a tubular network affect the spread of particles within fluid flows? We investigate patterns of effective dispersion in the hierarchical, biological transport network formed by Physarum polycephalum. We demonstrate that a change in topology - pruning in the foraging state - causes a large increase in effective dispersion throughout the network. By comparison, changes in the hierarchy of tube radii result in smaller and more localized differences. Pruned networks capitalize on Taylor dispersion to increase the dispersion capability.Comment: 5 pages, 4 figures, 11 pages supplemental materia

    Hopping and crawling DNA-coated colloids

    Full text link
    Understanding the motion of particles with ligand-receptors is important for biomedical applications and material design. Yet, even among a single design, the prototypical DNA-coated colloids, seemingly similar micrometric particles hop or roll, depending on the study. We shed light on this problem by observing DNA-coated colloids diffusing near surfaces coated with complementary strands for a wide array of coating designs. We find colloids rapidly switch between 2 modes: they hop - with long and fast steps - and crawl - with short and slow steps. Both modes occur at all temperatures around the melting point and over a wide array of designs. The particles become increasingly subdiffusive as temperature decreases, in line with subsequent velocity steps becoming increasingly anti-correlated. Overall, crawling (or hopping) phases are more predominant at low (or high) temperatures; crawling is also more efficient at low temperatures than hopping to cover large distances. We rationalize this behavior within a simple model: at lower temperatures, the number of bound strands increases, and detachment of all bonds is unlikely, hence, hopping is prevented and crawling favored. We thus reveal the mechanism behind a common design rule relying on increased strand density for long-range self-assembly: dense strands on surfaces are required to enable crawling, possibly facilitating particle rearrangements
    corecore